Saturday, March 5, 2011

An Illustrated History of Computers


This picture shows what were known as "counting tables" 

The first computers were people! That is, electronic computers (and the earlier mechanical computers) were given this name because they performed the work that had previously been assigned to people. "Computer" was originally a job title: it was used to describe those human beings (predominantly women) whose job it was to perform the repetitive calculations required to compute such things as navigational tables, tide charts, and planetary positions for astronomical almanacs. Imagine you had a job where hour after hour, day after day, you were to do nothing but compute multiplications. Boredom would quickly set in, leading to carelessness, leading to mistakes. And even on your best days you wouldn't be producing answers very fast. Therefore, inventors have been searching for hundreds of years for a way to mechanize (that is, find a mechanism that can perform) this task.



A typical computer operation back when computers were people.

The abacus was an early aid for mathematical computations. Its only value is that it aids the memory of the human performing the calculation. A skilled abacus operator can work on addition and subtraction problems at the speed of a person equipped with a hand calculator (multiplication and division are slower). The abacus is often wrongly attributed to China. In fact, the oldest surviving abacus was used in 300 B.C. by the Babylonians. The abacus is still in use today, principally in the far east. A modern abacus consists of rings that slide over rods, but the older one pictured below dates from the time when pebbles were used for counting (the word "calculus" comes from the Latin word for pebble).

A very old abacus

n 1617 an eccentric (some say mad) Scotsman named John Napier invented logarithms, which are a technology that allows multiplication to be performed via addition. The magic ingredient is the logarithm of each operand, which was originally obtained from a printed table. But Napier also invented an alternative to tables, where the logarithm values were carved on ivory sticks which are now called Napier's Bones.

An original set of Napier's Bones 
A more modern set of Napier's Bones

Napier's invention led directly to the slide rule, first built in England in 1632 and still in use in the 1960's by the NASA engineers of the Mercury, Gemini, and Apollo programs which landed men on the moon.


A slide rule
Leonardo da Vinci (1452-1519) made drawings of gear-driven calculating machines but apparently never built any.


A Leonardo da Vinci drawing showing gears arranged for computing
The first gear-driven calculating machine to actually be built was probably the calculating clock, so named by its inventor, the German professor Wilhelm Schickard in 1623. This device got little publicity because Schickard died soon afterward in the bubonic plague.


Schickard's Calculating Clock
In 1642 Blaise Pascal, at age 19, invented the Pascaline as an aid for his father who was a tax collector. Pascal built 50 of this gear-driven one-function calculator (it could only add) but couldn't sell many because of their exorbitant cost and because they really weren't that accurate (at that time it was not possible to fabricate gears with the required precision). Up until the present age when car dashboards went digital, the odometer portion of a car's speedometer used the very same mechanism as the Pascaline to increment the next wheel after each full revolution of the prior wheel. Pascal was a child prodigy. At the age of 12, he was discovered doing his version of Euclid's thirty-second proposition on the kitchen floor. Pascal went on to invent probability theory, the hydraulic press, and the syringe. Shown below is an 8 digit version of the Pascaline, and two views of a 6 digit version:


Pascal's Pascaline [photo © 2002 IEEE]


A 6 digit model for those who couldn't afford the 8 digit model


A Pascaline opened up so you can observe the gears and cylinders which rotated to display the numerical result


Just a few years after Pascal, the German Gottfried Wilhelm Leibniz (co-inventor with Newton of calculus) managed to build a four-function (addition, subtraction, multiplication, and division) calculator that he called the stepped reckoner because, instead of gears, it employed fluted drums having ten flutes arranged around their circumference in a stair-step fashion. Although the stepped reckoner employed the decimal number system (each drum had 10 flutes), Leibniz was the first to advocate use of the binary number system which is fundamental to the operation of modern computers. Leibniz is considered one of the greatest of the philosophers but he died poor and alone.


Leibniz's Stepped Reckoner (have you ever heard "calculating" referred to as "reckoning"?)
In 1801 the Frenchman Joseph Marie Jacquard invented a power loom that could base its weave (and hence the design on the fabric) upon a pattern automatically read from punched wooden cards, held together in a long row by rope. Descendents of these punched cards have been in use ever since (remember the "hanging chad" from the Florida presidential ballots of the year 2000?).


Jacquard's Loom showing the threads and the punched cards


By selecting particular cards for Jacquard's loom you defined the woven pattern [photo © 2002 IEEE]


A close-up of a Jacquard card


This tapestry was woven by a Jacquard loom
Jacquard's technology was a real boon to mill owners, but put many loom operators out of work. Angry mobs smashed Jacquard looms and once attacked Jacquard himself. History is full of examples of labor unrest following technological innovation yet most studies show that, overall, technology has actually increased the number of jobs.
By 1822 the English mathematician Charles Babbage was proposing a steam driven calculating machine the size of a room, which he called the Difference Engine. This machine would be able to compute tables of numbers, such as logarithm tables. He obtained government funding for this project due to the importance of numeric tables in ocean navigation. By promoting their commercial and military navies, the British government had managed to become the earth's greatest empire. But in that time frame the British government was publishing a seven volume set of navigation tables which came with a companion volume of corrections which showed that the set had over 1000 numerical errors. It was hoped that Babbage's machine could eliminate errors in these types of tables. But construction of Babbage's Difference Engine proved exceedingly difficult and the project soon became the most expensive government funded project up to that point in English history. Ten years later the device was still nowhere near complete, acrimony abounded between all involved, and funding dried up. The device was never finished.


A small section of the type of mechanism employed in Babbage's Difference Engine [photo © 2002 IEEE]
Babbage was not deterred, and by then was on to his next brainstorm, which he called the Analytic Engine. This device, large as a house and powered by 6 steam engines, would be more general purpose in nature because it would be programmable, thanks to the punched card technology of Jacquard. But it was Babbage who made an important intellectual leap regarding the punched cards. In the Jacquard loom, the presence or absence of each hole in the card physically allows a colored thread to pass or stops that thread (you can see this clearly in the earlier photo). Babbage saw that the pattern of holes could be used to represent an abstract idea such as a problem statement or the raw data required for that problem's solution. Babbage saw that there was no requirement that the problem matter itself physically pass thru the holes.
Furthermore, Babbage realized that punched paper could be employed as a storage mechanism, holding computed numbers for future reference. Because of the connection to the Jacquard loom, Babbage called the two main parts of his Analytic Engine the "Store" and the "Mill", as both terms are used in the weaving industry. The Store was where numbers were held and the Mill was where they were "woven" into new results. In a modern computer these same parts are called the memory unit and the central processing unit (CPU).
The Analytic Engine also had a key function that distinguishes computers from calculators: the conditional statement. A conditional statement allows a program to achieve different results each time it is run. Based on the conditional statement, the path of the program (that is, what statements are executed next) can be determined based upon a condition or situation that is detected at the very moment the program is running.
You have probably observed that a modern stoplight at an intersection between a busy street and a less busy street will leave the green light on the busy street until a car approaches on the less busy street. This type of street light is controlled by a computer program that can sense the approach of cars on the less busy street. That moment when the light changes from green to red is not fixed in the program but rather varies with each traffic situation. The conditional statement in the stoplight program would be something like, "if a car approaches on the less busy street and the more busy street has already enjoyed the green light for at least a minute then move the green light to the less busy street". The conditional statement also allows a program to react to the results of its own calculations. An example would be the program that the I.R.S uses to detect tax fraud. This program first computes a person's tax liability and then decides whether to alert the police based upon how that person's tax payments compare to his obligations.
Babbage befriended Ada Byron, the daughter of the famous poet Lord Byron (Ada would later become the Countess Lady Lovelace by marriage). Though she was only 19, she was fascinated by Babbage's ideas and thru letters and meetings with Babbage she learned enough about the design of the Analytic Engine to begin fashioning programs for the still unbuilt machine. While Babbage refused to publish his knowledge for another 30 years, Ada wrote a series of "Notes" wherein she detailed sequences of instructions she had prepared for the Analytic Engine. The Analytic Engine remained unbuilt (the British government refused to get involved with this one) but Ada earned her spot in history as the first computer programmer. Ada invented the subroutine and was the first to recognize the importance of looping. Babbage himself went on to invent the modern postal system, cowcatchers on trains, and the ophthalmoscope, which is still used today to treat the eye.
The next breakthrough occurred in America. The U.S. Constitution states that a census should be taken of all U.S. citizens every 10 years in order to determine the representation of the states in Congress. While the very first census of 1790 had only required 9 months, by 1880 the U.S. population had grown so much that the count for the 1880 census took 7.5 years. Automation was clearly needed for the next census. The census bureau offered a prize for an inventor to help with the 1890 census and this prize was won by Herman Hollerith, who proposed and then successfully adopted Jacquard's punched cards for the purpose of computation.
Hollerith's invention, known as the Hollerith desk, consisted of a card reader which sensed the holes in the cards, a gear driven mechanism which could count (using Pascal's mechanism which we still see in car odometers), and a large wall of dial indicators (a car speedometer is a dial indicator) to display the results of the count.


An operator working at a Hollerith Desk like the one below



Preparation of punched cards for the U.S. census


A few Hollerith desks still exist today [photo courtesy The Computer Museum]
The patterns on Jacquard's cards were determined when a tapestry was designed and then were not changed. Today, we would call this a read-only form of information storage. Hollerith had the insight to convert punched cards to what is today called a read/write technology. While riding a train, he observed that the conductor didn't merely punch each ticket, but rather punched a particular pattern of holes whose positions indicated the approximate height, weight, eye color, etc. of the ticket owner. This was done to keep anyone else from picking up a discarded ticket and claiming it was his own (a train ticket did not lose all value when it was punched because the same ticket was used for each leg of a trip). Hollerith realized how useful it would be to punch (write) new cards based upon an analysis (reading) of some other set of cards. Complicated analyses, too involved to be accomplished during a single pass thru the cards, could be accomplished via multiple passes thru the cards using newly printed cards to remember the intermediate results. Unknown to Hollerith, Babbage had proposed this long before.
Hollerith's technique was successful and the 1890 census was completed in only 3 years at a savings of 5 million dollars. Interesting aside: the reason that a person who removes inappropriate content from a book or movie is called a censor, as is a person who conducts a census, is that in Roman society the public official called the "censor" had both of these jobs.
Hollerith built a company, the Tabulating Machine Company which, after a few buyouts, eventually became International Business Machines, known today as IBM. IBM grew rapidly and punched cards became ubiquitous. Your gas bill would arrive each month with a punch card you had to return with your payment. This punch card recorded the particulars of your account: your name, address, gas usage, etc. (I imagine there were some "hackers" in these days who would alter the punch cards to change their bill). As another example, when you entered a toll way (a highway that collects a fee from each driver) you were given a punch card that recorded where you started and then when you exited from the toll way your fee was computed based upon the miles you drove. When you voted in an election the ballot you were handed was a punch card. The little pieces of paper that are punched out of the card are called "chad" and were thrown as confetti at weddings. Until recently all Social Security and other checks issued by the Federal government were actually punch cards. The check-out slip inside a library book was a punch card. Written on all these cards was a phrase as common as "close cover before striking": "do not fold, spindle, or mutilate". A spindle was an upright spike on the desk of an accounting clerk. As he completed processing each receipt he would impale it on this spike. When the spindle was full, he'd run a piece of string through the holes, tie up the bundle, and ship it off to the archives. You occasionally still see spindles at restaurant cash registers.


Two types of computer punch cards

Incidentally, the Hollerith census machine was the first machine to ever be featured on a magazine cover.


IBM continued to develop mechanical calculators for sale to businesses to help with financial accounting and inventory accounting. One characteristic of both financial accounting and inventory accounting is that although you need to subtract, you don't need negative numbers and you really don't have to multiply since multiplication can be accomplished via repeated addition.
But the U.S. military desired a mechanical calculator more optimized for scientific computation. By World War II the U.S. had battleships that could lob shells weighing as much as a small car over distances up to 25 miles. Physicists could write the equations that described how atmospheric drag, wind, gravity, muzzle velocity, etc. would determine the trajectory of the shell. But solving such equations was extremely laborious. This was the work performed by the human computers. Their results would be published in ballistic "firing tables" published in gunnery manuals. During World War II the U.S. military scoured the country looking for (generally female) math majors to hire for the job of computing these tables. But not enough humans could be found to keep up with the need for new tables. Sometimes artillery pieces had to be delivered to the battlefield without the necessary firing tables and this meant they were close to useless because they couldn't be aimed properly. Faced with this situation, the U.S. military was willing to invest in even hair-brained schemes to automate this type of computation.
One early success was the Harvard Mark I computer which was built as a partnership between Harvard and IBM in 1944. This was the first programmable digital computer made in the U.S. But it was not a purely electronic computer. Instead the Mark I was constructed out of switches, relays, rotating shafts, and clutches. The machine weighed 5 tons, incorporated 500 miles of wire, was 8 feet tall and 51 feet long, and had a 50 ft rotating shaft running its length, turned by a 5 horsepower electric motor. The Mark I ran non-stop for 15 years, sounding like a roomful of ladies knitting. To appreciate the scale of this machine note the four typewriters in the foreground of the following photo.


The Harvard Mark I: an electro-mechanical computer
You can see the 50 ft rotating shaft in the bottom of the prior photo. This shaft was a central power source for the entire machine. This design feature was reminiscent of the days when waterpower was used to run a machine shop and each lathe or other tool was driven by a belt connected to a single overhead shaft which was turned by an outside waterwheel.


A central shaft driven by an outside waterwheel and connected to each machine by overhead belts was the customary power source for all the machines in a factory
Here's a close-up of one of the Mark I's four paper tape readers. A paper tape was an improvement over a box of punched cards as anyone who has ever dropped -- and thus shuffled -- his "stack" knows.


One of the four paper tape readers on the Harvard Mark I (you can observe the punched paper roll emerging from the bottom)
One of the primary programmers for the Mark I was a woman, Grace Hopper. Hopper found the first computer "bug": a dead moth that had gotten into the Mark I and whose wings were blocking the reading of the holes in the paper tape. The word "bug" had been used to describe a defect since at least 1889 but Hopper is credited with coining the word "debugging" to describe the work to eliminate program faults.


The first computer bug [photo © 2002 IEEE]
In 1953 Grace Hopper invented the first high-level language, "Flow-matic". This language eventually became COBOL which was the language most affected by the infamous Y2K problem. A high-level language is designed to be more understandable by humans than is the binary language understood by the computing machinery. A high-level language is worthless without a program -- known as a compiler -- to translate it into the binary language of the computer and hence Grace Hopper also constructed the world's first compiler. Grace remained active as a Rear Admiral in the Navy Reserves until she was 79 (another record).
The Mark I operated on numbers that were 23 digits wide. It could add or subtract two of these numbers in three-tenths of a second, multiply them in four seconds, and divide them in ten seconds. Forty-five years later computers could perform an addition in a billionth of a second! Even though the Mark I had three quarters of a million components, it could only store 72 numbers! Today, home computers can store 30 million numbers in RAM and another 10 billion numbers on their hard disk. Today, a number can be pulled from RAM after a delay of only a few billionths of a second, and from a hard disk after a delay of only a few thousandths of a second. This kind of speed is obviously impossible for a machine which must move a rotating shaft and that is why electronic computers killed off their mechanical predecessors.
On a humorous note, the principal designer of the Mark I, Howard Aiken of Harvard, estimated in 1947 that six electronic digital computers would be sufficient to satisfy the computing needs of the entire United States. IBM had commissioned this study to determine whether it should bother developing this new invention into one of its standard products (up until then computers were one-of-a-kind items built by special arrangement). Aiken's prediction wasn't actually so bad as there were very few institutions (principally, the government and military) that could afford the cost of what was called a computer in 1947. He just didn't foresee the micro-electronics revolution which would allow something like an IBM Stretch computer of 1959:

(that's just the operator's console, here's the rest of its 33 foot length:)

to be bested by a home computer of 1976 such as this Apple I which sold for only $600:


The Apple 1 which was sold as a do-it-yourself kit (without the lovely case seen here)
Computers had been incredibly expensive because they required so much hand assembly, such as the wiring seen in this CDC 7600:



Typical wiring in an early mainframe computer [photo courtesy The Computer Museum]
The microelectronics revolution is what allowed the amount of hand-crafted wiring seen in the prior photo to be mass-produced as an integrated circuit which is a small sliver of silicon the size of your thumbnail .


An integrated circuit ("silicon chip") [photo courtesy of IBM]
The primary advantage of an integrated circuit is not that the transistors (switches) are miniscule (that's the secondary advantage), but rather that millions of transistors can be created and interconnected in a mass-production process. All the elements on the integrated circuit are fabricated simultaneously via a small number (maybe 12) of optical masks that define the geometry of each layer. This speeds up the process of fabricating the computer -- and hence reduces its cost -- just as Gutenberg's printing press sped up the fabrication of books and thereby made them affordable to all.
The IBM Stretch computer of 1959 needed its 33 foot length to hold the 150,000 transistors it contained. These transistors were tremendously smaller than the vacuum tubes they replaced, but they were still individual elements requiring individual assembly. By the early 1980s this many transistors could be simultaneously fabricated on an integrated circuit. Today's Pentium 4 microprocessor contains 42,000,000 transistors in this same thumbnail sized piece of silicon.
It's humorous to remember that in between the Stretch machine (which would be called a mainframe today) and the Apple I (a desktop computer) there was an entire industry segment referred to as mini-computers such as the following PDP-12 computer of 1969:


The DEC PDP-12
Sure looks "mini", huh? But we're getting ahead of our story.
One of the earliest attempts to build an all-electronic (that is, no gears, cams, belts, shafts, etc.) digital computer occurred in 1937 by J. V. Atanasoff, a professor of physics and mathematics at Iowa State University. By 1941 he and his graduate student, Clifford Berry, had succeeded in building a machine that could solve 29 simultaneous equations with 29 unknowns. This machine was the first to store data as a charge on a capacitor, which is how today's computers store information in their main memory (DRAM or dynamic RAM). As far as its inventors were aware, it was also the first to employ binary arithmetic. However, the machine was not programmable, it lacked a conditional branch, its design was appropriate for only one type of mathematical problem, and it was not further pursued after World War II. It's inventors didn't even bother to preserve the machine and it was dismantled by those who moved into the room where it lay abandoned.


The Atanasoff-Berry Computer [photo © 2002 IEEE]
Another candidate for granddaddy of the modern computer was Colossus, built during World War II by Britain for the purpose of breaking the cryptographic codes used by Germany. Britain led the world in designing and building electronic machines dedicated to code breaking, and was routinely able to read coded Germany radio transmissions. But Colossus was definitely not a general purpose, reprogrammable machine. Note the presence of pulleys in the two photos of Colossus below:


Two views of the code-breaking Colossus of Great Britain

The Harvard Mark I, the Atanasoff-Berry computer, and the British Colossus all made important contributions. American and British computer pioneers were still arguing over who was first to do what, when in 1965 the work of the German Konrad Zuse was published for the first time in English. Scooped! Zuse had built a sequence of general purpose computers in Nazi Germany. The first, the Z1, was built between 1936 and 1938 in the parlor of his parent's home.


The Zuse Z1 in its residential setting
Zuse's third machine, the Z3, built in 1941, was probably the first operational, general-purpose, programmable (that is, software controlled) digital computer. Without knowledge of any calculating machine inventors since Leibniz (who lived in the 1600's), Zuse reinvented Babbage's concept of programming and decided on his own to employ binary representation for numbers (Babbage had advocated decimal). The Z3 was destroyed by an Allied bombing raid. The Z1 and Z2 met the same fate and the Z4 survived only because Zuse hauled it in a wagon up into the mountains. Zuse's accomplishments are all the more incredible given the context of the material and manpower shortages in Germany during World War II. Zuse couldn't even obtain paper tape so he had to make his own by punching holes in discarded movie film. Because these machines were unknown outside Germany, they did not influence the path of computing in America. But their architecture is identical to that still in use today: an arithmetic unit to do the calculations, a memory for storing numbers, a control system to supervise operations, and input and output devices to connect to the external world. Zuse also invented what might be the first high-level computer language, "Plankalkul", though it too was unknown outside Germany

No comments:

Post a Comment